3 Annual mean levels of fine particulate matter (e.g., PM2.5) in cities (population weighted)

Definition and scope
This indicator measures the national average concentration levels of particulate matter with a diameter of 2.5 microns or smaller (PM2.5) in urban areas (µg/m3), weighted by city population size. There is no reference to PM10.

Factsheet rationale
Measuring levels of fine particulate matter, this indicator can support monitoring of the per capita health impacts related to improvements or degradation of air quality in cities. NOTE: Articulating the indicator as annual population-weighted averages increases the suitability and measurability of this indicator at a national scale.

Air pollution consists of many pollutants including particulate matter. These particles, which reflect unsustainable consumption and production patterns, constitute a risk to health and increased mortality from respiratory infections and diseases, lung cancer, and selected cardiovascular diseases.

Current situation and progress in the Mediterranean region
According to WHO data compiled for SDG 11.6.2, the Mediterranean region countries are contributors of PM2.5 pollutants in ambient air, clearly arising from unsustainable consumption and production patterns. The limit set by the WHO (10 µg/m3) is exceeded by 2, 4 and 8 times, indicating a chronic environmental issue. Between 2014 and 2016, the most recent years computed, little change in PM2.5 emissions can be observed, except for Egypt and Bosnia and Herzegovina, both of which reduced their emissions.

Annual mean levels of PM2.5 in cities (2016 vs 2014)

![Graph showing annual mean levels of PM2.5 in cities (2016 vs 2014)]

Mean levels of fine particulate matter in cities (2016)

![Map showing mean levels of fine particulate matter in cities (2016)]

Sources
UN SDGs - WHO

Links
https://unstats.un.org/sdgs/indicators/database/
(http://www.who.int/gho/phe/air_pollution_pm25_concentrations/en/)

Key message
All the Mediterranean region countries exceed or reach the maximum value of 10 µg PM2.5/m3.